
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #3

Regular Expressions under Linux

0.1 Introduction

The experiment intends to make students familiar with using regular expressions embedded
within the basic Linux commands such as grep, tr and sed. Examples on how to use regular
expressions will be provided and the sed command will be presented1.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Learn on how to use regular expressions with Linux commands.

• Tackle the sed command.

0.3 Regular Expressions

Regular Expressions provide a convenient and consistent way of specifying patterns to be
matched.

The shell recognizes a limited form of regular expressions when you use filename substitution.
Recall that the asterisk (*) specifies zero or more characters to match, the question mark (?)
specifies any single character, and the construct [...] specifies any character enclosed between
the brackets. The regular expressions recognized by the aforementioned programs are far more
sophisticated than those recognized by the shell. Also be advised that the asterisk and the
question mark are treated differently by these programs than by the shell.

0.3.1 Matching Any Character: The Period (.)

A period in a regular expression matches any single character, no matter what it is. So the
regular expression:

grep ’\<c...h\>’ *.txt

will display all five-character English dictionary words starting with ”c” and ending in ”h”.

The following command will search for all 3-letter words in all text files:

grep ’\<...\>’ *.txt

0.3.2 Matching the Beginning of the Line: The Caret (∧)

If we want to display only the lines that start with a particular string, we can use the caret as
follows:

grep ∧root /etc/passwd

Only the lines that start with the string root will be displayed.

1Stephen Kochan, Patrick Wood, Unix Shell programming Third Edition. Sams Publishing, 456 pages.

1



0.3.3 Matching the End of the Line: The Dollar Sign ($)

Just as the caret is used to match the beginning of the line, so is the dollar sign $ used to match
the end of the line. So the regular expression:

grep m$ *.txt

will search all lines in all text files that end with the letter m

To do

Type exactly the following text in file exp.txt:

The Unix operating system was pioneered

by

Ken

Thompson and Dennis

Ritchie at Bell

Laboratories in the late 1960s. Onee

of the primary

goals in the design of the Unix system was to create an environment that

promoted efficient program

development.

[my name]

.Hi man

HHi man

my mamamamamama my

mohammadm

Run the following commands and note the output:

grep l$ exp.txt

grep y$ exp.txt

grep ∧R exp.txt

Note:

Run the command:

grep .$ exp.txt

and note the output that you get.

You will notice that you don’t get only the lines that end with a dot but all the lines in the file
exp.txt. This matches any single character at the end of the line (including a period). recall
that a dot matches any character. So how do you match a period?

In general, if you want to match any of the characters that have a special meaning in forming
regular expressions, you must precede the character by a backslash (\) to remove that special
meaning as follows:

grep ’\.$’ exp.txt

You will notice that you get the output that you are looking for.

The following command will search for all lines in file exp.txt that start with a dot:

grep ’∧\.’ exp.txt

It is worth noting that the regular expression:

grep ∧$ exp.txt

matches any line that contains no characters.

2



0.3.4 Matching a Choice of Characters: The [...] Construct

Suppose you want to display all lines in the file exp.txt that contain the string ”The”, you
execute:

grep ’\<The\>’ exp.txt

If you want to display all lines that contain either the string ”The” or the string ”the”, you
execute:

grep ’\<[Tt]he\>’ exp.txt

The regular expression above would match lowercase or uppercase t followed immediately by
the characters he.

If you intend to display all lines that contain numbers, you execute:

grep ’[0123456789]’ exp.txt

or, more succinctly, you could simply execute:

grep ’[0-9]’ exp.txt

To match an uppercase letter, you execute:

grep ’[A-Z]’ exp.txt

And to match an upper- or lowercase letter, you execute:

grep ’[A-Za-z]’ exp.txt

To find a line that starts with an uppercase letter, you execute:

grep ’∧[A-Z]’ exp.txt

If a caret (∧) appears as the first character after the left bracket, the sense of the match is
inverted. For example, the regular expression:

grep ’[∧A-Z]’ exp.txt

matches any character except an uppercase letter. Similarly,

grep ’[∧A-Za-z]’ exp.txt

matches any nonalphabetic character.

The following command will execute all lines in file exp.txt that do not start with an alphabetic
character:

grep ’∧[∧A-Za-z]’ exp.txt

0.3.5 Matching Zero or More Characters: The Asterisk (*)

The asterisk is used by the shell in filename substitution to match zero or more characters.
In forming regular expressions, the asterisk is used to match zero or more occurrences of the
preceding character in the regular expression (which may itself be another regular expression).
For example:

grep ’[t*]’ exp.txt

matches one or more capital t’s, because the expression specifies a single t followed by zero or
more t’s.

The following regular expression matches any alphabetic character followed by zero or more
alphabetic characters:

grep ’[A-Za-z][A-Za-z]*’ exp.txt

Equally, the following regular expression matches any numeric string followed by zero or more
nonalphabetic characters:

3



grep ’[0-9][0-9]*’ exp.txt

Note:

If you want to match a dash character inside a bracketed choice of characters, you must put
the dash immediately after the left bracket (and after the inversion character ∧ if present) or
immediately before the right bracket ]. So the expression:

grep ’[-0-9]’ exp.txt

matches a single dash or digit character.

Equally, if you want to match a dash character inside a bracketed choice of characters, you must
put the dash immediately after the left bracket (and after the inversion character ∧ if present)
or immediately before the right bracket ]. So the expression:

grep ’[]0-9]’ exp.txt

matches a right bracket or a digit.

0.3.6 Matching a Precise Number of Characters: \{...\}

In the preceding examples, we’ve seen how we can specify a certain number of occurences of a
character. There is a more general way to specify a precise number of characters to be matched
by using the construct:

\{min,max\}

where min specifies the minimum number of occurrences of the preceding regular expression to
be matched, and max specifies the maximum. For example, the regular expression:

grep ’T\{1,10\}’ exp.txt

matches from one to ten consecutive T’s.

Whenever there is a choice, the largest pattern is matched; so if the input text contains eight
consecutive T’s at the beginning of the line, that is how many will be matched by the preceding
regular expression. As another example, the regular expression:

grep ’[A-Za-z]\{8,20\}’ exp.txt

matches a sequence of alphabetic letters from eight to twenty characters long.

A few special cases of this special construct are worth noting. If only one number is enclosed
between the braces, as in

\{2\}

that number specifies that the preceding regular expression must be matched exactly that many
times. For example, execute the following command:

grep ’[A-Za-z]\{2\}’ exp.txt

and note the output. You will be disappointed by the output that you get. Can you explain
why you get such an output?

The remedy to that problem is to execute the following command:

grep ’[.\{2\}’ exp.txt

and that will match exactly two characters (no matter what they are).

If a single number is enclosed in the braces, followed immediately by a comma, then at least
that many occurrences of the previous regular expression must be matched. So, if you execute
the following command:

grep ’[A-Za-z]\{2,\}’ exp.txt

you will get all the lines that match at least two consecutive characters. Once again, if more

4



than two exist, the largest number is matched.

0.3.7 Saving Matched Characters: \(...\)

You are surely happy with what you have seen in the previous sections and can sense already
the power of regular expressions. However, there are still some limitations in what you have in
the above examples. Below are some scenarios:

• How can you display all lines of a file or set of files that start with the same repeated
characters?

Example: Show all lines in file exp.txt that start with the letters aa or bb, cc, etc.

• How can you display all lines of a file or set of files that start and end with the same
character?

More examples might pop up to your mind. The trick consists of saving the matched characters

as described below.

It is possible to capture the characters matched within a regular expression by enclosing the
characters inside backslashed parentheses. These captured characters are stored in ”registers”
numbered 1 through 9. For example, the regular expression:
∧\(.\)

matches the first character on the line, whatever it is, and stores it into register 1. To retrieve
the characters stored in a particular register, the construct \n is used, where n is from 1-9.

So, the regular expression:
∧\(.\)\1

matches the first character on the line and stores it in register 1. Then the expression matches
whatever is stored in register 1, as specified by the \1.

Examples

• The following regular expression will display on the standard output all lines of the file
exp.txt that start with the same repeated characters:

grep ’∧\(.\)\1’ exp.txt

The net effect of this regular expression is to match the first two characters on a line if

they are both the same character.

• The following regular expression will display on the standard output all lines of the file
exp.txt that start and end with the same character:

grep ’∧\(.\).*\1$’ exp.txt

The above regular expression matches all lines in which the first character on the line
(∧.) is the same as the last character on the line (\1$). The .* matches all the characters
in-between.

Successive occurrences of the \(...\) construct get assigned to successive registers. So when
the following regular expression is used to match some text:

∧\(...\)\(...\)

the first three characters on the line will be stored into register 1, and the next three
characters into register 2.

The below table summarizes the special characters recognized in regular expressions2.

2Stephen Kochan, Patrick Wood, Unix Shell programming Third Edition. Sams Publishing, 456 pages.

5



Notation Meaning Example Matches

. any character a.. a followed by any two characters

∧ beginning of line ∧wood wood only if it appears at the

beginning of the line

$ end of line x$ x only if it is the last character on the

line

∧INSERT$ a line containing just the characters

INSERT

∧$ a line that contains no characters

* zero or more occurrences W.*S W followed by zero or more characters

of a character followed by an S

.* zero or more characters

[chars] any character in chars [tT] lower- or uppercase t

[∧chars] any character not in chars [∧0 -9] any nonnumeric character

[∧a-zA-Z] any nonalphabetic character

\{min,max\} at least min and at most max x\{1,5\} at least 1 and at and at most 5 x’s

occurrences of previous regular
expressions

[0-9]\{3,9\} from 3 to 9 successive digits

[0-9]\{3\} exactly 3 digits

[0-9]\{3,\} at least 3 digits

\(...\) store characters matched ∧\(.\) first character on line and stores it in

between parentheses in next register 1
register (1-9)

∧\(.\)\1 first and second characters on the

line if they’re the same

0.4 the sed command

sed is a program used for editing data. It stands for stream editor. The general form of the sed
command is:

sed command file

where command is applied to each line of the specified file.

Create the file exp1.txt and type into it the following text:

The Unix operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the Unix system was to create an

environment that promoted efficient program

6



development.

Suppose that you want to change all occurrences of ”Unix” in the text to ”UNIX.” This can be
easily done in sed as follows:

sed ’s/Unix/UNIX/’ exp1.txt

The output will look like:

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

The sed command s/Unix/UNIX/ is applied to every line of file exp1.txt. Whether or not the
line gets changed by the command, it gets written to standard output all the same. Note that
sed makes no changes to the original input file. To make the changes permanent, you must
redirect the output from sed into a temporary file and then move the file back to the old one:

sed ’s/Unix/UNIX/’ exp1.txt > temp

mv temp exp1.txt

If your text included more than one occurrence of ”Unix” on a line, the preceding sed would
have changed just the first occurrence on each line to ”UNIX.” By appending the global option
g to the end of the s command, you can ensure that multiple occurrences of the string on a line
will be changed. In this case, the sed command would read:

sed ’s/Unix/UNIX/g’ exp1.txt

0.4.1 The -n option

The command sed can be used as well if you want to print any part of a file. For such purposed,
the command -n is used. This option tells sed that you don’t want it to print any lines unless
explicitly told to do so. This is done with the p command. By specifying a line number or range
of line numbers, you can use sed to selectively print lines of text. So, for example, to print just
the first two lines from a file, the following could be used:

sed -n ’1,2p’ exp1.txt

The output will be as follows:

The UNIX operating system was pioneered by Ken

Thompson and Dennis Ritchie at Bell Laboratories

If, instead of line numbers, you precede the p command with a string of characters enclosed
in slashes, sed prints just those lines from standard input that contain those characters. The
following example shows how sed can be used to display just the lines that contain a particular
string:

sed -n ’/UNIX/p’ exp1.txt

The output will be as follows:

The UNIX operating system was pioneered by Ken

the design of the UNIX system was to create an

7



0.4.2 Deleting lines

To delete entire lines of text, use the d command. By specifying a line number or range of
numbers, you can delete specific lines from the input. In the following example, sed is used to
delete the first two lines of text from exp1.txt:

sed ’1,2d’ exp1.txt

The output will be as follows:

in the late 1960s. One of the primary goals in

the design of the UNIX system was to create an

environment that promoted efficient program

development.

By preceding the d command with a string of text, you can use sed to delete all lines that
contain that text. In the following example, sed is used to delete all lines of text containing the
word ”UNIX”:

sed ’/UNIX/d’ exp1.txt

The output will be as follows:

Thompson and Dennis Ritchie at Bell Laboratories

in the late 1960s. One of the primary goals in

environment that promoted efficient program

development.

The power and flexibility of sed command goes far beyond what we’ve shown here. In the below
table, we show some examples of sed commands:

sed command Description

sed ’5d’ Delete line 5

sed ’/[Tt]est/d’ Delete all lines containing Test or test

sed -n ’20,25p’ text Print only lines 20 through 25 from text

sed ’1,10s/unix/UNIX/g’ exp1.txt Change unix to UNIX wherever it appears in the first 10

lines of exp1.txt

sed ’/jan/s/-1/-5/’ Change the first -1 to -5 on all lines containing jan

sed ’s/...//’ exp1.txt Delete the first three characters from each line of exp1.txt

sed ’s/...$//’ exp1.txt Delete the last 3 characters from each line of exp1.txt

sed -n ’l’ text Print all lines from text, showing nonprinting characters as

\nn (where nn is the octal value of the character), and tab
characters as \t

8


